
Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 1 of 14

Who calls me? ���� Me ���� Who do I call?

Recently, and long overdue, I completed converting a large CW5.5 veterinary application

to a multi-DLL CW6.3 app. The CW5.5 app contained 927 procedures in 42 modules.

Redeploying these procedures to DLLs and keeping straight “who called who” such that

none of the DLLs had circular references looked like a lot to keep straight.

The three programs presented in this paper were created to help verify that I had done

that. These programs weren’t intended to be an end in themselves but as this exercise

unfolded and these tools grew it became apparent that they may be useful to the Clarion

community. The newsgroups and Clarion Magazine have been a great resource for me

and this paper is my attempt to give something back that someone might find useful.

A Little Background for Perspective

After much trial and error I ultimately settled on nine DLLs. This paper doesn’t address

that exercise but rather the tools that I wrote to help verify that the procedures were

deployed to an appropriate DLL. They enabled me to quickly find where some procedure

was placed if testing the new restructured app presented some illegal function that might

indicate that a procedure would be better placed elsewhere. Internal development

documentation is likely to be enhanced as well.

Figure 1 – Explorer View of Development Environment

The app being evaluated will become Vet8.exe so each DLL was named v8 plus a single

letter indicative of the DLL’s functionality. E.g. Statement procedures are placed in the

Folders
containing
each of the
DLL apps.

The clw modules
that will be parsed
for procedures.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 2 of 14

v8M.DLL shown above in Fig 1. This isn’t important to how one may choose to define

the subordinate DLL apps but perhaps will help viewing the screen prints and some of the

discussion in this paper. Each app.DLL produces a “Default Program” clw file that

contains a reference to each module identifying the procedure names in each module.

 PROGRAM

 INCLUDE('ABERROR.INC'),ONCE
 INCLUDE('ABFILE.INC'),ONCE
 INCLUDE('ABFUZZY.INC'),ONCE
 INCLUDE('ABUTIL.INC'),ONCE
 INCLUDE('ERRORS.CLW'),ONCE
 INCLUDE('KEYCODES.CLW'),ONCE

 MAP

 MODULE('V8S.DLL')
BrowseProvider PROCEDURE,DLL !
BrowseSystemDefaults PROCEDURE,DLL !
SelectClient_Short PROCEDURE,DLL !
Set_mServiceDate_System PROCEDURE(Long),DLL ! (Long)
 END
 MODULE('V8X.DLL')
BackupFiles2LocalDisk PROCEDURE,DLL !
 END

!--- Application Global and Exported Procedure Definitions --
 MODULE('V8M001.CLW')
Main PROCEDURE !
 END
 MODULE('V8M002.CLW')
RptStatementAllClients_Alphabetical PROCEDURE(Long) !18p - m:ClientNbr
fStatementOptions FUNCTION(Byte,*Long,*Long,*Byte,*Long),Byte !11p - INI
fConfirmAgeStatementSelections FUNCTION(*Long,*Long,Byte,Long),Byte !6p - CS(60)

 … lots more code evaluated …

As the first program reads this file for procedures and the modules that contained

them, it ultimately will encounter “! Declare”, below, which indicated that the

remainder of that file was no longer of interest and it quit.

 ! Declare functions defined in this DLL
v8M:Init PROCEDURE(<ErrorClass curGlobalErrors>, <INIClass curINIMgr>)
v8M:Kill PROCEDURE
 ! Declare init functions defined in a different DLL
 MODULE('V8F.DLL')
v8F:Init PROCEDURE(<ErrorClass curGlobalErrors>, <INIClass curINIMgr>),DLL
v8F:Kill PROCEDURE,DLL
 END

… lots more code but of no interest…

Figure 2 – Default Program Code Snippet

In a single app this was would be in the include files. The programs discussed here focus

only on the DLL apps that have already been constructed. I placed each DLL app in its

own folder. This shouldn’t be necessary but because I was breaking up such a big app it

was convenient for me.

Modules
with DLL
extension
are external.

CLW modules are local.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 3 of 14

Capture All Procedure Names

Each of the “Default Program” clw and inc files was copied to a working folder:

“_Vet8” to be read by the first of the three programs and capture all of the primary

application procedures into one tps file, Fig 3. The “_” prefix isn’t important except to

alphabetically segregate the folder names in Explorer.

Figure 3 – Files that Identify DLL app Modules and Procedures

When all “Default Program” clw and inc files are conveniently gathered, run the

program: CLW2TPS, to read each of those clw and inc files and accumulate all of the

entire app’s procedures, Fig 4.

Figure 4 – The CLW2TPS Program

Set “Create” on the 1
st
 clw file read and “append” an all others. Order is not important.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 4 of 14

CLW2TPS builds the file AppProc.tps identifying each procedure, their source app,

member module, name, prototype, whether it was local to this DLL or some external

DLL, whether it’s a Procedure or a Function and finally any comment. The 3
rd

 program,

AppProc Fig 6, allows viewing of this data and will be presented in more detail later in

this paper.

AppProc FILE,DRIVER('TOPSPEED'),PRE(APR),CREATE,BINDABLE,THREAD
pkAppProcID KEY(APR:AppProcID),NOCASE,OPT,PRIMARY
kApplication KEY(APR:Application,APR:ProcedureName),DUP,NOCASE
kModule KEY(APR:Module,APR:ProcedureName),DUP,NOCASE
kProcedureName KEY(APR:ProcedureName),DUP,NOCASE

Record RECORD,PRE()
AppProcID LONG
Application STRING(20)
Module STRING(20)
ProcedureName STRING(100)
FP STRING(1)
Prototype STRING(100)
External BYTE
Calls LONG
Called LONG
RemoteLaptop BYTE
Config LONG
PassMap LONG
ModuleData STRING(1)
GlobalData STRING(1)
Comment STRING(250)

Figure 5 – AppProc.tps Dictionary

The comments contained information useful to me including my running indication of the

number of called procedures that was maintained manually during development. This

number was carefully accounted for but not necessarily trustworthy.

APPPROC is the program that presents the results of this capture but at this point it is

only beginning to become useful. The evaluated app’s procedures have been identified.

External procedures are shown in red and the prototypes have a “,DLL” suffix.

Figure 6 – AppProc Program View of the AppProc.tps Data

The fields: Calls through Comment
were of interest to me and are not
critical or even pertinent to this paper.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 5 of 14

Filters allow viewing: a) All b) External c) Local procedures.

At this stage, one only knows where local and external procedures are located, app and

module wise. Module names without numeric suffixes are external. This is pretty useful

by itself but to know what procedures were called by each procedure and additionally the

procedures that call that procedure would be even better. That’s where we’re headed

Each DLL development folder contains everything necessary to build that DLL, Fig 1.

The important files for this exercise are the generated clw files. The “Default Program”

un-numbered clw file doesn’t usually contain any generated procedures unless one has

put procedures in that module. I’m guilty of moving procedures from module to module

for whatever perverse purpose seemed important at that moment so I am trying to not

assume on the practices of other developers.

Rather than bother to exclude processing that file, simply assume that someone might

place some procedures there and let these programs check. This minimizes manual

interaction to single out or exclude files for the following program,

The Big One! Parse the Code for Procedures They Call.

The PROCCALL program allows the user to evaluate either a selected clw file in the

folder of interest or all clw files sequentially.

Figure 7 - ProcCall “Who Calls Who” Window.

Who calls me? ���� Me ���� Who do I call?

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 6 of 14

I recommend that one put a copy of the ProcCall program in each of the development

folders and choose to let it process all clw files. Each clw module file in the folder is

scanned line by line for “Declared” and “Generated” procedures. The directory list at the

upper left highlights the currently selected module file.

 MEMBER('v8M.clw') ! This is a MEMBER module

 INCLUDE('ABBROWSE.INC'),ONCE
 INCLUDE('ABPOPUP.INC'),ONCE
 INCLUDE('ABTOOLBA.INC'),ONCE
 INCLUDE('ABWINDOW.INC'),ONCE

 MAP
 INCLUDE('V8M003.INC'),ONCE !Local module procedure declarations
 END

fInsertNewClientAccountHistoryRecord PROCEDURE (pClientNbr,pStatement,pInterest) ! Declare
Procedure
r:Return BYTE
l:LogError STRING(50)
 CODE
 CLEAR(ACH:AccountHistoryNbr,1)
 SET(ACH:pkAccountHistoryNbr,ACH:pkAccountHistoryNbr)
 IF Access:AcctHist.PREVIOUS() = Level:Benign
 NextLink# = ACH:AccountHistoryNbr
 ELSE
 NextLink# = 0
 END
 ACH:AccountHistoryNbr = NextLink# + 1
 ACH:ClientNbr = pClientNbr
 ACH:StatementDate = pStatement
 ACH:Balance = fSummAccountBalance (CLI:ClientNbr)
 ACH:Current = CLI:Current
 ACH:Aged_30Days = CLI:Accounts30
 ACH:Aged_60Days = CLI:Accounts60
 ACH:Aged_90Days = CLI:Accounts90
 IF Access:AcctHist.INSERT() = Level:Benign
 IF fConfigSetting (1) = Enable
 LogTestMessage('AcctHist Record ('& ACH:AccountHistoryNbr &') created.|' &|
 '|Client: '& fClientName (pClientNbr))
 END
 r:Return = Success
 ELSE
 l:LogError = CLIP(Error()) &', AH# ('& ACH:AccountHistoryNbr &'), C# ('& pClientNbr &')'
 LogVetErrors (l:LogError, 'AcctHist', Insert)
 r:Return = Failure
 END

… lots of code …

ViewClientTrainers PROCEDURE (pClientNbr) ! Generated from procedure template - Window

l:ClientNbr LONG !
l:ClientName STRING(40) !
Window WINDOW('Client''s Trainers'),AT(,,217,165),FONT('MS Sans
Serif',8,,FONT:regular),SYSTEM,GRAY,DOUBLE,MDI
 LIST,AT(8,18,201,120),USE(?List1),VSCROLL,FORMAT('160L(2)|M~Trainer
Name~C(0)@s40@56L(2)|M~Trainer Nbr~C(0)@n-14@'),FROM(QueClientTrainers)
 BUTTON('Close'),AT(165,145,45,14),USE(?Close)
 END
ThisWindow CLASS(WindowManager)

… lots more code …
Figure 8 – Snippet of Module Code being Parsed for Procedures

Examples of
procedures found
within the source

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 7 of 14

Each source line is parsed specifically for: “! Declare” marks the beginning of a series

of source lines that ends when either another “! Declare” or a “! Generated from”

occurs which is the beginning of another procedure and brackets procedure source within

the module being processed. The check is reversed to process generated procedures.

PROCCALL processes Declared procedures then Generated procedures as two separate

sequential passes of each source module. This choice was an arbitrary decision but doing

all of one then all of the other made coding a little simpler.

 LOOP
 NEXT(ApSource)
 IF ErrorCode() = 33 THEN BREAK.
 SourceData = APS:SourceData
 IF SourceData = '' THEN CYCLE.
 CASE DeclaredGenerated
 OF 1
 IF INSTRING('! Declare Procedure',SourceData,1,1) > 0
 ScanSourceLine
 ! FoundProcedure. Start to fill the source eval queue
 ELSE
 IF INSTRING('! Generated from',SourceData,1,1) > 0
 ! Encountered the other "Type"
 ScanSourceLine
 ELSE
 ! Fill_SourceQue
 END
 END
 OF 2
 IF INSTRING('! Generated from',SourceData,1,1) > 0

Figure 9 – Pseudo Code Snippet to Fill the Procedure Evaluation Queue

One couldn’t simply search for the word “Procedure” because Clarion generates a lot of

these as a part of the ABC method structure. I use ABC.

The source of each pertinent procedure, as encountered in the module, is placed in the

larger list, at right Fig 7. Then each line is parsed to look for each of the full app’s

identified procedures, contained in the AppProc.tps file created by the CLW2TPS

program identified in Fig 4. These procedures are shown at lower left of Fig 7.

 LOOP J# = 2 TO Records(QueSource)
 GET(QueSource,J#)
 SourceLine = q3:Source
 S# = 1
 LOOP K# = 1 TO Records(QueAppProc)
 GET(QueAppProc,K#)
 IF CLIP(q4:ProcName) = CLIP(CallingProcedure)
 CYCLE
 ELSE
 IF q4:Encountered = 1 THEN Cycle.
 ! Subsequent lines could call the procedure again,
 ! don't care about these. Save some indicator that this
 ! procedure was already called by the calling procedure.
 ProcedureStart = INSTRING(CLIP(q4:ProcName),SourceLine,1,S#)
 IF ProcedureStart => 1
 DO CheckNotInterested
 END
 END
 END
 END

Figure 10 – Pseudo Code Snippet to Scan Each Source Line for a Procedure

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 8 of 14

Each source line in the list at right, Fig 7, is evaluated for all of the procedures present.

In my case that was 927 procedure names that were looked for.

Validity Checks.

Just parsing each line of the source for the existence of a string that matches the name of

one of the main apps many procedures isn’t sufficient. The following considerations are

checked for validity.

� Any procedure may call another many times but only one occurrence of any

called procedure is of interest. Subsequent usage is skipped.

� A “use variable” could have the same name as a procedure. I do that occasionally

as it facilitates internal documentation and code maintainability. So when

PROCCALL gets a procedure hit it checks the character immediately preceding

to see if it is a “?”. It notes the hit in the list at lower center but mark it “Use

Var”, declares this an invalid call and skips it.

� The procedure name could be part of a string constant. PROCCALL checks the

character immediately preceding to see if it is a “ ’ ”, notes the hit, marks it

“String”, declares this an invalid call and skips it.

� The procedure name could be after a “!” indicating it was part of a comment.

PROCCALL checks for the first occurrence of a “!” to see if that occurs at an

earlier line position than the procedure name hit. If so it notes the hit marks it

“Comment”, declares it an invalid call and skips the rest of the line.

It gets even trickier. I noticed some habits that I have that could lead to false hits. A

procedure name could be contained within another procedure name. It could have some

special prefix or suffix. It could be an argument for a CLIP(ProcName), START

(ProcName) or something else.

� Consider:

o _ProcedureName

o (ProcedureName this is likely a legitimate hit.

o SomethingProcedureName

o ProcedureNameSomething

A SubProc.tps record is written for each called procedure identified.

SubProc FILE,DRIVER('TOPSPEED'),PRE(SPR),CREATE,BINDABLE,THREAD
pkSubProcID KEY(SPR:SubProcID),NOCASE,OPT,PRIMARY
fkProcedureCalled KEY(SPR:ProcedureCalled),DUP,NOCASE
fkCallingProcedure KEY(SPR:CallingProcedure),DUP,NOCASE
Record RECORD,PRE()
SubProcID LONG
ProcedureCalled STRING(100)
CalledProcedureModule STRING(20)
CountProceduresCallingMe LONG
CallingProcedure STRING(100)
CallingProcedureModule STRING(20)
CountProceduresCalledByMe LONG

Figure 11 – SubProc.tps Dictionary

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 9 of 14

Each “declared” procedure processed is identified in the list immediately at the right of

the App’s module list. Then, serially, each “generated” procedure is processed. These

procedures are shown in the list at the right of the “declared” list as they are processed.

Any identified procedures parsed from the source lines are shown in the list below the

declared and generated procedure lists, bottom center of Fig 7.

Results Summary Upon Completion

When done a Results

summary is presented.

Mostly this is a signal of

completion The AppProc

program allows the user to

view this data whenever they

wish.

 Figure 12 – AppProc Completion Summary

Optional Text file

An optional ASCII text file

may be produced for what use

that may provide. See the

“Create Text File” check box

at the upper right of fig 7.

If activated, these are

automatically named after the

module. E.g. Module

v8m002.clw would have a text

file named v8m002.clw.txt

which can be viewed by any

text editor.

Called procedures, if any, are

shown indented following the

calling procedure.

 Figure 13 – Optional Text File Summary

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 10 of 14

DLL Hierarchy Considerations

As each DLL app is compiled and export files are created, successive DLL apps will be

dependent on their awareness of defined exported procedures. Running PROCCALL

isn’t sensitive to this order. However if you run it in each of the respective development

folders, the resulting SubProc.tps file will need to be copied to the folder to be processed

next so that that folders procedures can be appended to that growing file.

Use APPPROC to Review it All.

AppProc app, first introduced in Fig 6 is now more useful because of all the SubProc data

accumulated by ProcCall, Fig 14.

 Figure 14 – AppProc “Who do I Call.”

Each procedure, left, presents all of the procedures that it calls, center, and they in turn

show (if you are interested) the procedures that they call, right. Unlike the procedure tree

view in the IDE, the repetition stops at that level. Each of these three lists present their

source module and their DLL priority. The lower the priority number the more

fundamental the DLL placement.

Procedures are intended to call external procedures equal or lower priority levels. If a

procedure calls another with a higher priority number it is presented in red and should be

considered to be moved to a DLL with a higher priority number.

The list at the lower right simply reminds of your DLL hierarchy.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 11 of 14

 Figure 15 – AppProc “Who Calls Me.”

Who calls me presents the SubProc.tps data in reverse. I think it is of less value but

interesting never the less.

 Figure 16 – AppProc Scan Prototypes for Inconsistencies

As one can quickly see from the large number of member procedures, it becomes tedious

to visually check all of them for prototype data entry errors. So I created a scan, Fig 16,

to find them and then got a little carried away to suit some of my coding conventions

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 12 of 14

 Figure 17 – Report of the Prototype Inconsistencies Encountered

The following enlarged snippet from the report, Fig 17, illustrates a little clearer, the

comparisons being checked for inconsistencies. Besides looking for prototype content

errors in the external lib modules, I like to retain some typographical conventions. The

two that I check for here are font “case” and inconsistent placement of “spaces”.

 Figure 18 – Enlarged, Focused Example of Inconsistency Report

Different font “case” Inconsistent “spacing”

These are likely not errors (although spaces could be) but rather fussiness on my part.

Prototype typing errors, however, can illicit error messages that are cryptic at best.

 Figure 19 – A Cryptic Error from the Vet8 app being analyzed.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 13 of 14

I was presented with the one in Fig 19 that stymied me for awhile until I decided to check

some prototype definitions.

Correct source procedure prototype.

Incorrect external protptype.
 Figure 20 – Comparison of Correct and Incorrect Prototype Definitions.

After creating this check I found a few more errors, which I may or may not have

otherwise found or worse a client may call with a message that would have taken a long

time for me to find. You all know how clear user descriptions of what they were doing

just before an error is presented: “I didn’t do any thing wrong!”

Some Code References

On 8 May 2008, I posted: “Curious about many DLL’s” to the comp.lang.clarion

newsgroup and Maartin responded with a link http://www.softprohk.nl/ReadProc.zip

to a program that he had developed. His program is a very useful presentation and the

work presented in here is an evolutionary outgrowth of his work. Thank you Maartin.

Note (Dave), not to be part of this paper: Is this legitimate to refer to in this paper?

Perhaps I should offer a copy of all of this to him. I wish to give credit to where credit is

due.

Summary

These programs are prototypes written using CW 6.3EE that I wrote for myself but I

suspect that other Clarion developers might find them or pieces of them useful as their

app’s are broken into DLLs. The first two are hand coded. The third was a template app.

Another use may facilitate internal development documentation. I usually write some

booklets to serve as maps to my apps. User documentation may be served as well but the

detail is probably more than the typical user would ever care to look at.

See the companion paper that uses the DllTutor example provided by Soft Velocity.

Selzler Computing DRAFT “Who Calls Who”

6 December 2008 DRAFT Page 14 of 14

About Me

I grew up in a wide spot in the road in North Dakota, got a degree in aeronautical

engineering from the University of Washington and had a real small part putting Neal

Armstrong and Buzz Aldrin on the moon. I’ve built control software for a chemical laser

in assembler and was project engineer responsible for the I/O portion of an operating

system for an AN/UYK (PDP-11) for a Marine Corps battlefield computer while at TRW.

I consulted to Raytheon on the Patriot missile.

In 1982 I started my own company, Selzler Computing, to write software for equine

veterinarians. That first program was written on and for a dual floppy TRS 80.

Remember that one? I’ve built a physician Electronic Medical Record package in

CW2.003 and have been using Clarion since version 1 for Windows. My family and I

live in Longmont, Colorado.

